TITLE: Cloud Robotics and factories Of The FuTure (CROFT)
FUNDING INSTITUTION: Generalitat Valenciana
START DATE: 01/01/2020 END DATE: 30/12/2022
PRINCIPAL RESEARCHER: Narcís Cardona Marcet
WEB: http://vlc-croft5g.com/
DESCRIPTION: This project addresses the research required for the development of mobile robotics in the cloud based on 5th generation mobile networks for the future IoT revolution. Low latency, high capacity demands, and a large number of mobile wireless entities connected to the Internet will require a continuous Ultra Dense Network (UDN) that is likely to use mmW bands to support future factory wireless connectivity. The connection network must be multi-hop, with connectivity nodes moving throughout the factory, even with drones, to ensure line of sight conditions for successful mmW communication. The nodes can cooperate in the transmission/ reception of data in a centralized or distributed way. In addition, the design of the protocol, mainly speaking of the PHY and MAC procedures, will guarantee the minimum battery consumption of the communicating machines. The objective of the project is to research and optimize the operation of RAN architectures for 5G standards beyond NR phase 2, and to design reliable and realistic PHY and MAC procedures adapted to this new communication model composed of mesh networks and mobile nodes. The ultimate goal is to achieve an improvement in the latency, reliability, and capacity of the large number of robots, drones, droids and humans that will work together in the factory of the future. In this context, the new communication paradigm of mmW and continuous UDNs together with the use of multihop cellular communications play a transversal role. During the project, the performance of the systems will be evaluated, simulations, RF measurements, and experiments with a large number of devices will be performed to validate the design principles used. For this purpose, the VLC-CAMPUS-5G will be exploited. In addition, this project aims to attract the talent of women to the new job opportunities that 5G will generate. This project has been funded by the Prometeo 2020 grant from the Generalitat Valenciana to carry out R & D & I projects for research groups of excellence. consumption of the communicating machines.
FUNDING INSTITUTION: Generalitat Valenciana
START DATE: 01/01/2020 END DATE: 30/12/2022
PRINCIPAL RESEARCHER: Narcís Cardona Marcet
WEB: http://vlc-croft5g.com/
DESCRIPTION: This project addresses the research required for the development of mobile robotics in the cloud based on 5th generation mobile networks for the future IoT revolution. Low latency, high capacity demands, and a large number of mobile wireless entities connected to the Internet will require a continuous Ultra Dense Network (UDN) that is likely to use mmW bands to support future factory wireless connectivity. The connection network must be multi-hop, with connectivity nodes moving throughout the factory, even with drones, to ensure line of sight conditions for successful mmW communication. The nodes can cooperate in the transmission/ reception of data in a centralized or distributed way. In addition, the design of the protocol, mainly speaking of the PHY and MAC procedures, will guarantee the minimum battery consumption of the communicating machines. The objective of the project is to research and optimize the operation of RAN architectures for 5G standards beyond NR phase 2, and to design reliable and realistic PHY and MAC procedures adapted to this new communication model composed of mesh networks and mobile nodes. The ultimate goal is to achieve an improvement in the latency, reliability, and capacity of the large number of robots, drones, droids and humans that will work together in the factory of the future. In this context, the new communication paradigm of mmW and continuous UDNs together with the use of multihop cellular communications play a transversal role. During the project, the performance of the systems will be evaluated, simulations, RF measurements, and experiments with a large number of devices will be performed to validate the design principles used. For this purpose, the VLC-CAMPUS-5G will be exploited. In addition, this project aims to attract the talent of women to the new job opportunities that 5G will generate. This project has been funded by the Prometeo 2020 grant from the Generalitat Valenciana to carry out R & D & I projects for research groups of excellence. consumption of the communicating machines.
TITLE: 5G for Connected and Automated Road Mobility in the European union (5G-RECORDS)
FUNDING INSTITUTION: Comisión Europea
START DATE: October 2020 END DATE: March 2023
PRINCIPAL RESEARCHER: David Gómez Barquero
WEB: www.5g-records.eu
DESCRIPTION: 5G-RECORDS aims to explore the opportunities which new 5G technology components – these include the core network (5GC), radio access network (RAN) and end devices – bring to the professional production of audiovisual content. The project targets the development, integration, validation and demonstration of 5G components for professional content production, as part of an overall ecosystem integrating a subset of 5G network functions. The project aims to use of 5G non-public networks (NPNs) as a way to bring these new 5G components to emerging markets and new market actors, while also addressing recent emerging remote and distributed production workflows where cloud technologies cooperate with 5G. 5G-RECORDS has considered 3 use cases to embrace some of the most challenging scenarios in the framework of professional content production: live audio production, a multi-camera wireless studio and live immersive media production. iTEAM is the coordinator of the project. This project has been H2020.
FUNDING INSTITUTION: Comisión Europea
START DATE: October 2020 END DATE: March 2023
PRINCIPAL RESEARCHER: David Gómez Barquero
WEB: www.5g-records.eu
DESCRIPTION: 5G-RECORDS aims to explore the opportunities which new 5G technology components – these include the core network (5GC), radio access network (RAN) and end devices – bring to the professional production of audiovisual content. The project targets the development, integration, validation and demonstration of 5G components for professional content production, as part of an overall ecosystem integrating a subset of 5G network functions. The project aims to use of 5G non-public networks (NPNs) as a way to bring these new 5G components to emerging markets and new market actors, while also addressing recent emerging remote and distributed production workflows where cloud technologies cooperate with 5G. 5G-RECORDS has considered 3 use cases to embrace some of the most challenging scenarios in the framework of professional content production: live audio production, a multi-camera wireless studio and live immersive media production. iTEAM is the coordinator of the project. This project has been H2020.
TITLE: FUlly DisinteGrated private nEtworks for 5G verticals (FUDGE-5G)
FUNDING INSTITUTION: Generalitat Valenciana
START DATE: September 2020 END DATE: February 2023
PRINCIPAL RESEARCHER: David Gómez Barquero
WEB: https://fudge-5g.eu/en
DESCRIPTION: FUDGE-5G will make a leap forward in realizing the notion of cloud-native 5G private networks by developing a further enhanced ServiceBased Architecture (eSBA) for both control plane and user plane with “decomposed” players of the ecosystem divided into: New Radio (NR) access network infrastructure provider, eSBA platform provider, mobile 5G Core (5GC) provider, vertical application orchestration provider and vertical service provider. The forward-looking FUDGE-5G architecture will also feature “allEthernet” 5GLAN (Local Area Network), 5G-TSN (Time- Sensitive Networking), 5G-Multicast and intelligent vertical application orchestration features. The proposed framework enables highly customized cloud-native deployment of private 5G networks. FUDGE-5G will accelerate the (inevitable) shift to a fully software-based 5G core network by offering a disintegrated environment where components, both in control and user plane, can be deployed anywhere as micro-services (i.e., edge, on premises and cloud),being agnostic to the underlying infrastructure. This softwarization exposing 5G NR HW to third parties will enable the usage of off-the-shelf commodity HW to deliver additional cost savings, faster deployments and ultimately greater adoption for private networks. iTEAM is the coordinator of the project, and the leader of the media use case.
FUNDING INSTITUTION: Generalitat Valenciana
START DATE: September 2020 END DATE: February 2023
PRINCIPAL RESEARCHER: David Gómez Barquero
WEB: https://fudge-5g.eu/en
DESCRIPTION: FUDGE-5G will make a leap forward in realizing the notion of cloud-native 5G private networks by developing a further enhanced ServiceBased Architecture (eSBA) for both control plane and user plane with “decomposed” players of the ecosystem divided into: New Radio (NR) access network infrastructure provider, eSBA platform provider, mobile 5G Core (5GC) provider, vertical application orchestration provider and vertical service provider. The forward-looking FUDGE-5G architecture will also feature “allEthernet” 5GLAN (Local Area Network), 5G-TSN (Time- Sensitive Networking), 5G-Multicast and intelligent vertical application orchestration features. The proposed framework enables highly customized cloud-native deployment of private 5G networks. FUDGE-5G will accelerate the (inevitable) shift to a fully software-based 5G core network by offering a disintegrated environment where components, both in control and user plane, can be deployed anywhere as micro-services (i.e., edge, on premises and cloud),being agnostic to the underlying infrastructure. This softwarization exposing 5G NR HW to third parties will enable the usage of off-the-shelf commodity HW to deliver additional cost savings, faster deployments and ultimately greater adoption for private networks. iTEAM is the coordinator of the project, and the leader of the media use case.
TITLE: Integrated Telematics for Next Generation 5G Vehicular Communications (ITN-5VC)
FUNDING INSTITUTION: European Commision
START DATE: 2020 END DATE: 2024
PRINCIPAL RESEARCHER: José F. Monserrat del Río
WEB: https://itn5vc.eu/
DESCRIPTION: ITN-5VC aims to investigate how multi-band multi-antenna communications, including mmWave, could be integrated together with radar heads and other wireless sensors into the same telematics unit, so that transmission chains and radiation systems were reused using the same spectrum in an opportunistic manner. This idea has important implications in the design of the vehicle and its communications that will also be addressed in the project. With this premise, the project aims to investigate the future C-V2X systems based on 5G NR and how to integrate them with autonomous driving sensor systems.
FUNDING INSTITUTION: European Commision
START DATE: 2020 END DATE: 2024
PRINCIPAL RESEARCHER: José F. Monserrat del Río
WEB: https://itn5vc.eu/
DESCRIPTION: ITN-5VC aims to investigate how multi-band multi-antenna communications, including mmWave, could be integrated together with radar heads and other wireless sensors into the same telematics unit, so that transmission chains and radiation systems were reused using the same spectrum in an opportunistic manner. This idea has important implications in the design of the vehicle and its communications that will also be addressed in the project. With this premise, the project aims to investigate the future C-V2X systems based on 5G NR and how to integrate them with autonomous driving sensor systems.
TITLE: Next-GENeration IoT sOlutions for the Universal Supply chain
FUNDING INSTITUTION: European Commision
START DATE: October 2020 END DATE: March 2023
PRINCIPAL RESEARCHER: David Gómez Barquero
WEB: https://ingenious-iot.eu/web/
DESCRIPTION: iNGENIOUS will exploit some of the most innovative and emerging technologies in line with the standardised trend, contributing to the Next-Generation IoT and proposing technical and business enablers to build a complete platform for supply chain management. iNGENIOUS embraces the 5G Infrastructure Association (5G IA) and Alliance for Internet of Things Innovation (AIOTI) vision for empowering smart manufacturing and smart mobility verticals. The iNGENIOUS network layer brings new smart 5G-based IoT functionalities, federated Multi-Access Edge Computing (MEC) nodes and smart orchestration, needed for enabling the projected real-time capable use cases of the supply chain. Security and data management are fully recognized as important features in the project. iNGENIOUS will create a holistic security architecture for next-generation IoT built on neuromorphic sensors with security governed by Artificial Intelligence (AI) algorithms and tilebased hardware architectures based on security by design and isolation by default. In the application layer, iNGENIOUS new AI mechanisms will allow more precise predictions than conventional systems. Project outcomes will be validated into 4 large-scale Proof of Concept demonstration, covering 1 factory, 2 ports, and 1 ship, encompassing 6 uses cases. iTEAM is the coordinator of the project, and the leader of the media use case.
FUNDING INSTITUTION: European Commision
START DATE: October 2020 END DATE: March 2023
PRINCIPAL RESEARCHER: David Gómez Barquero
WEB: https://ingenious-iot.eu/web/
DESCRIPTION: iNGENIOUS will exploit some of the most innovative and emerging technologies in line with the standardised trend, contributing to the Next-Generation IoT and proposing technical and business enablers to build a complete platform for supply chain management. iNGENIOUS embraces the 5G Infrastructure Association (5G IA) and Alliance for Internet of Things Innovation (AIOTI) vision for empowering smart manufacturing and smart mobility verticals. The iNGENIOUS network layer brings new smart 5G-based IoT functionalities, federated Multi-Access Edge Computing (MEC) nodes and smart orchestration, needed for enabling the projected real-time capable use cases of the supply chain. Security and data management are fully recognized as important features in the project. iNGENIOUS will create a holistic security architecture for next-generation IoT built on neuromorphic sensors with security governed by Artificial Intelligence (AI) algorithms and tilebased hardware architectures based on security by design and isolation by default. In the application layer, iNGENIOUS new AI mechanisms will allow more precise predictions than conventional systems. Project outcomes will be validated into 4 large-scale Proof of Concept demonstration, covering 1 factory, 2 ports, and 1 ship, encompassing 6 uses cases. iTEAM is the coordinator of the project, and the leader of the media use case.